Journal of Korean Society of Dental Hygiene 2016; 16(5): 695-700 http://dx.doi.org/10.13065/jksdh,2016.16,05,695

ISSN 2287-1705(Print) ISSN 2288-2294(Online)

CAD/CAM 세라믹의 두께가 색조에 미치는 영향

강 월 · 한만소 · 기지환

고려대학교 대학원 보건과학과 치의기공전공 • 1대전보건대학교 치기공과

Effect of CAD/CAM ceramic thickness on shade

Wol Kang · Man-So Han¹ · Ji-Hwan Kim

Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University • ¹Department of Dental Technology, Daejeon Health University

*Corresponding Author: Ji-Hwan Kim, Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University, Tel: +82-10-6270-0341, Fax: +82-2-916-5943, E-mail: kjh2804@korea.ac.kr

Received: 14 July 2016; Revised: 4 October 2016; Accepted: 5 October 2016

ABSTRACT

Objectives: The purpose of the study was to investigate the effect of CAD/CAM ceramic thickness on shade.

Methods: 24 disk-shaped ceramic specimens (E.Max CAD & Empress CAD, 12 mm \times 12 mm) were prepared and divided into 4 groups (n=6). Ceramic specimens in 2 thicknesses (0.8 mm, 1.0 mm) were made low translucency(LT) shade A2. All specimens were measured as L*, a*, b* using spectrophotometer. The color differences(\triangle E values) between the specimen and a control target block (12 \times 12 mm) were calculated. Two-way ANOVA performed between 2 groups(material and thickness).

Results: As the thickness increased, the L* (for all groups) and b* value (for all groups) increased and the a* value(for LR group) decreased. The mean color differences caused by thickness was acceptible ($\Delta E > 2$) for group LD1. But the mean color differences by thickness were not selected ($\Delta E < 2$) for group LD2, LR1, LR2.

Conclusions: The different thickness can influence the final color of CAD/CAM ceramic.

Key Words: CAD/CAM, shade, spectrophotometer

색인: 분광광도계, 색, CAD/CAM

서론

최근에 심미성이 중요해짐에 따라, 다양한 올세라믹 재료가 개발되었다[1]. 올세라믹 수복물은 색과 투명도 면에서 메탈 세라믹 수복물에 비해 심미적으로 자연치아에 더적합하기 때문이다[2]. 또한 우수한 생체 적합성 및 증가된 강도로 올세라믹에 대한 수요는 증가하였다[3]. 이러한 올세라믹 재료는 여러 가지 제조방법에 의해 만들어 질 수 있는데, 그 중에서 CAD/CAM 기술은 새로운 재료를 적용하

기 쉽고, 노동력과 비용을 줄이며, 품질을 높일 수 있기 때 문에 그 사용이 점차 증가하고 있다[4,5].

CAD/CAM으로 제작하는 대표적인 올세라믹 재료는 지르코니아이다. 그러나 지르코니아는 일반적으로 상부 도재와의 결합 강도가 다른 코어 재료의 결합 강도에 비해 낮고 [6], 상부 도재와 지르코니아 코어 간 굴곡강도 차이로 인해 상부 도재의 파절이 빈번하다[7]. 또한 자연치와 같은 반투 명성이 다른 올세라믹 재료에 비해 떨어지는 단점이 있다 [8]. 이러한 단점을 보완하기 위해 등장한 재료가 백류석 강화 세라믹(leucite reinforced ceramic)이다. 백류석 강화 세라믹은 미세 구조로 적합성이 좋고, 색과 투명도가 자연 치아에 잘 어울리기 때문에 주로 사용되었다[9,10]. 그러나 최근에 각광받는 세라믹 재료로 리튬 디실리케이트(lithium

Copyright©2016 by Journal of Korean Society of Dental Hygiene This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in medium, provided the original work is properly cited.

disilicate)가 등장하였다[11]. 리튬 디실리케이트는 400 MPa로 비교적 높은 강도를 가지고 있고, 상아질과 법랑질에 접착 및 에칭을 모두 할 수 있으며, 적절한 투명성으로 뛰어난 심미성을 나타내기 때문이다[12].

색이란 지각과정이 아니라 물리적 광에서부터 생리적, 심리적인 과정을 거치는 시각과정이다[13, 14]. 그러므로 색을 관찰할 때는 관찰자의 주관적 심리요소가 관여되기 때문에 색의 객관적 평가 및 정량화가 큰 문제점 중의 하나이다 [15].

본 연구에서는 연구결과의 신뢰도를 높이기 위해서 고정 밀 분광광도계를 사용하였다(CM-3600A, Konica Minolta, Japan). 분광광도계는 한 번에 한 번의 파동으로 물체의 반 사율과 투과율을 측정할 수 있다[16]. 특히 이 측정 기구의 장점은 물체에서 반사된 빛을 프리즘을 통해 20~40개의 센서로 파장대역별 반사율을 측정하여 색을 분석할 수 있기때문에 보다 정밀한 측정이 가능하다. 또한 색상을 분석하고 다양한 광원 아래서 시뮬레이션이 가능한 장점이 있다[17,18]. 단점으로는 하나의 범을 사용하기 때문에 시편의흡수 오차가 발생할 수 있다. 이를 줄이기 위해서 측정경의크기를 7 mm가 아닌 11 mm로 증가시켰다[19].

세라믹 수복물의 색에 영향을 미치는 요인으로는 두께 [20], 제조사[21], 표면 거칠기[22], 세라믹 성분[23], 불투 명도[24], 소성횟수, 응축 기술 등이 있다[25-27]. 자연치의 색은 상아질과 법랑질의 각각 다른 색과 두께 및 빛의 산란과 흡수에 의해 결정된다[28, 29]. 그러므로 자연스런 세라믹 수복물을 제작하기 위해서는 여러 가지 요소를 고려해야한다. 그 중에서도 세라믹의 두께는 세라믹 수복물의 색에 많은 영향을 미친다[24]. 선행연구에서는 동일한 색으로 제작한 세라믹 수복물일지라도 1.6 mm 미만 두께의 세라믹은 하부의 metal색이 차폐되지 않았지만, 1.6 mm 이상 두께의세라믹은 하부의 metal 색을 가릴 수 있다고 하였다[24]. 때문에 세라믹 수복물에 원하는 색을 재현하고자 한다면 일률적인 두께가 중요한 요소이다. 그러나 실제로 세라믹 수복

물의 두께는 미리 그 양을 측정하기 어려운 현실이다.

도재의 두께가 색에 미치는 영향에 대한 선행연구로는 도재 층의 두께가 달라짐에 따라서 최종 수복물의 색에 영향을 미친다고 보고한 연구가 있다[30]. 손 등[31]은 상아질 포세린의 두께가 두꺼워질수록 CIE L값은 감소하고, CIE a,b 값은 증가한다고 하였다. 또한 Vichi 등[20]은 도재 두께가 1.5 mm 미만이면 기질을 평가할 필요가 있다고 하였으며, Nakamura 등[32]은 도재 두께가 1.6 mm 이상이면 하부의 메탈 색을 차폐할 수 있는 두께라고 보고하였다. 그러나 현재까지 CAD/CAM 세라믹의 두께에 따른 색에 관한 연구는 부족한 실정이다. 따라서 본 연구의 목적은 CAD/CAM 세라믹의 두께가 색조에 미치는 영향을 알아보고자 한다.

연구방법

1. 시편제작

본 연구는 같은 제조사에서 제작된 lithium disilicate ceramic(LD)과 대조군으로 leucite reinforced ceramic(LR) 을 사용하였다(IPS e.Max CAD LT A2, IPS Empress CAD A2, Ivoclar Vivadent, Germany). 실험을 위해서 서로 다른 두께를 가진 12 mm 정사각형 시편이 각 그룹당 6개씩 총 24개와 대조군 시편 2개, 총 26개가 제작되었다. 시편의 두께 는 각각 0.8 mm, 1.0 mm이고 색차를 계산하기 위한 기준 시편은 1.2 mm로 제조사 설명서에 명시된 최소 두께 0.7 mm 보다 두껍게 제작하였다. 각각의 시편은 소성 시 일어나는 시 편의 뒤틀림과 절삭량을 고려하여 13 mm의 정사각형에 각각 의 두께보다 약 0.4 mm 크게 다이아몬드 절삭기로 절삭하였 다(Diamonde Blade, Samsung Clover, Korea). 절삭한 시편 은 제조사의 설명서에 따라 소성하였고, 소성 된 시편은 다이 아몬드 절삭기를 이용하여 12 mm 정사각형 모양으로 절삭하 였다. 그리고 시편의 양면은 수평형 평면연삭기로 평면을 맞추 어 준 후에(HRG-150, AM Technology, Germany), 실리콘

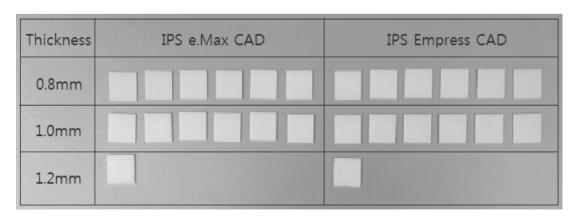


Fig. 1. Ceramic color

연마기로 양면을 연마하였다(SPL 15 Grind-X, Okamoto, Japan). 모든 시편은 잔류물을 제거하기 위해 증류수가 담긴 울트라 소닉 클리너에 10분간 세척하였다(Ultrasonic cleaner, Mujigae, Korea).

2. 측정도구

시편의 두께는 디지털 마이크로미터를 이용하여 무작위로 3점을 측정하였다(QuantuMike Digital micrometer, Mitutoyo, Japan). 측정된 시편의 두께로 평균과 표준편차를 구하였다.

색의 측정은 분광광도계(CM-3600A, Minolta, Japan)를 이용하여 3번 연속하여 나온 값의 평균을 사용하였다. 각시편의 L*, a*, b* 값을 측정하고, 각각의 평균과 표준편차를 산출하였다. L*은 명도를 나타내고, a*는 적색과 녹색의 정도를 나타내는데 +는 적색방향, -는 녹색방향을 나타낸다. b*는 황색과 청색의 정도로 +는 황색방향, -는 청색방향을 나타낸다. 기준 시편과 비교해서 시편의 두께가 줄어들수록 변하는 색차를 알아보기 위하여 Δ L*, Δ a*, Δ b*, Δ E 값을 구하였다.

$$\Delta L^* = L^*_2 - L^*_1$$

$$\Delta a^* = a^*_2 - a^*_1$$

$$\Delta b^* = b^*_2 - b^*_1$$

$$\Delta E = \{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2\}^{1/2}$$

3. 분석방법

통계분석은 SPSS 22.0을 사용하였다. 시편의 두께가 일 관성을 가지는지 알아보기 위하여기술통계를 실시하였고, LD와 LR 재료의 두께에 따른 색을 비교하기 위해서 Tukey의 사후분석을 실시하였다. 또한 재료와 두께의 차이

가 색에 미치는 영향을 알아보기 위하여 이원배치 분산분석 음 사용하였다.

연구결과

1. 각 시편의 두께

시편 두께의 평균±표준편차는 다음과 같다. IPS e.Max CAD 0.8 mm(LD1)은 0.8±0.00, IPS e.Max CAD 1.0 mm(LD2)은 1.00±0.00, IPS e.Max CAD 1.2 mm(LD)은 1.2 mm, ,IPS Empress CAD 0.8 mm(LR1)은 0.81±0.00, IPS Empress CAD 0.8 mm(LR2)은 1.00±0.00, IPS Empress CAD 1.2 mm(LR)은 1.2로 나타났다.

2. 각 시편의 색

<Table 1>은 각 시편의 두께에 따른 L*, a*, b* 값을 나타내고 있다. L*값의 경우에는 1.0 mm 두께가 0.8 mm 두께보다 큰 값이었다. a*값의 경우에는 1.0mm 두께가 0.8mm 두께보다 높은 값을 보였으며 비교적 녹색에 가까운 색을 보였다. b*값의 경우 1.0 mm 두께가 0.8 mm 두께보다 높은 값을 보이며 비교적 황색에 가까운 색을 보였다.

3. 각 시편의 색차

기준 시편에서 두께에 따른 각 시편의 색차인 ΔL^* , Δ a*, Δb^* 그리고 ΔE 값은 <Table 2>에 나타나 있다. LD 그룹은 기준 시편에 비해 두께가 감소할수록 ΔL^* , Δa^* , Δb^* 그리고 ΔE 값의 차이가 증가하였다. LR 그룹은 기준 시편에 비해 두께가 감소할수록 ΔL^* , Δa^* , ΔE 값의 차이가 증가한 반면에 Δb^* 값은 감소하였다.

Table 1. Mean(SD) L*, a*, b* values of specimens

Group	N	Thickness(mm)	Mean(SD)			
			L*	a*	b*	
LD1	6	0.8	66.31(0.31) ^a	-1.99(0.05) ^a	8.09(0.14) ^a	
LD2	6	1.0	$67.03(0.29)^{b}$	$-1.84(0.23)^{b}$	$9.59(0.17)^{b}$	
LR1	6	0.8	65.48(0.16) ^c	$-1.31(0.02)^{c}$	$9.29(0.07)^{c}$	
LR2	6	1.0	$66.40(0.19)^a$	$-1.26(0.01)^{c}$	$11.03(0.05)^{d}$	

a,b,c,d=Grouping information with Tukey method

Table 2, Mean(SD) $\triangle L^*$, $\triangle a^*$, $\triangle b^*$, $\triangle E$ values of specimens

Group	Mean	(SD)		
Group	ΔL^*	∆a*	Δb^*	$\Delta \mathrm{E}$
LD1	-0.81(0.31)	-0.31(0.04)	-2.81(0.14)	2.95(0.05)
LD2	-0.08(0.29)	-0.15(0.03)	-1.31(0.17)	1.35(0.16)
LR1	-2.30(0.16)	0.15(0.02)	-3.63(0.07)	4.30(0.07)
LR2	-1.45(0.23)	0.20(0.01)	-1.87(0.05)	2.38(0.17)

Table 3. Results of a 2-way ANOVA for mean △E values of specimens(material and thickness) tested

Source	Sum of Squares	df	Mean Square	F	p-value
Material	8.49	1	8.49	397.70	< 0.001
Thickness	18.64	1	18.64	873.64	< 0.001
Material*Thickness	0.14	1	0.14	9.34	0.006
Error	0.448	21	0.02		
Total	208.25	24			

 $R^2=98.4\%$, R^2 (adjusted)=98.2%

4. 시편의 재료와 두께가 색차에 미치는 영향

CAD/CAM 세라믹 재료와 두께에 따라 색차에 차이가 있는지를 보기 위해 이원배치 분산분석을 실시하였다 <Table 3>. 분산의 동질성에 대한 Levene의 검정 후 유의 확률이 0.454로 유의수준 0.05보다 크므로 등분산은 가정되었다. 이원배치 분산분석 결과 재료의 F값은 397.70, 유의 확률은 0.01보다 작으므로 재료에 따른 색의 차이가 있다고 볼 수 있다. 두께 또한 F값은 873.64이고 유의확률은 0.01보다 작으므로 두께 0.8 mm와 1.0 mm 간에는 색의 차이가 있다고 볼 수 있다. 두께와 재료의 교호작용은 색차에 유의한 영향을 준다고 볼 수 있다.

총괄 및 고안

임상에서 사용하는 CAD/CAM 세라믹 재료는 두께에 따라서 그 색에 차이가 발생한다[33]. 이러한 차이로 인해서 임상에서는 오차가 발생할 수 있고, 이러한 오차는 성공적인 보철물을 만들 수 없게 한다. 그러므로 본 연구에서는 두께가 변함에 따라서 나타나는 색의 차이를 분석해 보고자한다.

시편의 두께가 두꺼워질수록 CAD/CAM 세라믹 재료와 상관없이 L*값이 증가하면서, 명도가 높아지는 것으로 나타 났다<Table 1>. 특히 LR2가 LD1과 비슷한 명도를 나타낸 것으로 나타나 같은 두께일 때 LD그룹이 LR에 비해 명도 가 높다는 것을 알 수 있었다. $\triangle b^*$ 을 통해 b^* 값도 재료와 상관없이 시편의 두께가 얇아질수록 청색이 짙어졌다. 이는 두께가 얇아짐에 따라서 투명해지므로 청색이 짙어진 것으 로 사료된다. 이 결과를 통해 같은 1.0 mm 이내의 두께에 서도 충분히 색을 조정할 수 있다는 가능성을 보여주었다. 이는 선행 연구와도 유사한 결과로 그 이유는 시편 자체가 불투명하고 명도가 높기 때문이다[34]. 반면에 △a*값은 LD와 LR 그룹에서 상이한 차이를 보였는데 LD 그룹은 두 께가 감소할수록 녹색이 짙어진 데 비해 LR 그룹은 별 차 이가 없는 것으로 나타났다<Table 2>. 이는 시편의 두께가 얇아질수록 a*값은 LR 그룹에 비해 LD 그룹의 변화량이 높은 것으로 볼 수 있다. 이는 LR이 자연스러운 광학 특성

을 가지고 있는데 비해 LD는 그보단 불투명한 것에서 기인 한 것으로 생각된다[35].

색차를 평가하기 위해서 O'Brien 등은 △E가 1이하일 경우에는 육안으로 식별할 수 없고, 2 이하일 경우에는 임 상적으로 받아들여질 만하며, 3.7 이상일 경우에는 임상적 으로나 육안으로 확연히 구분할 수 있는 기준 값으로 사용 하였다[15]. 본 연구에서 LD 그룹은 두께가 0.2 mm 줄어 들면 색차가 1.35로 숙련된 전문가에 의해서만 구분할 수 있는 색차이기 때문에 임상적으로 받아들일 수 있는 색차였 다<Table 2>. 그러나 두께가 0.4 mm 줄어들면 색차가 2.95 로 비전문가에 의해서도 색차의 구별이 가능하기 때문에 임 상적으로 받아들일 수 없는 색차였다[36]. LR 그룹은 두께 가 0.2 mm 줄어들 때 색차가 2.38로 임상적으로 받아들일 수는 없지만 치과의사가 색차를 느끼는 2.6보다는 작은 값 이었다[37]. 또한 두께가 0.4 mm 줄어들면 색차가 4.30으 로 임상적으로나 육안으로 확연히 구분할 수 있는 상태였지 만 치과의사가 색상불일치로 재제작을 요구하는 5.5보다는 낮았다[37]. 이러한 결과를 토대로 같은 A2라고 하여도 재 료와 두께에 따라서 색이 다르다는 것을 알 수 있었다. 이를 위해 재료와 두께에 따른 이원배치 분산분석을 시행한 결과 유의확률이 0.01보다 작게 나와서 두께와 재료에 따라 색차 가 달라진다는 것을 확인하였다.

본 연구를 통해 저자는 CAD/CAM 세라믹의 최종 색조가 두께에 따라서 색에 영향을 미친다는 것을 알 수 있었고, 그 정도가 육안으로도 구별할 수 있을 만큼 적지 않기 때문에, 심미성이 중요한 최근의 경향을 고려할 때 CAD/CAM 세라믹으로 제작하는 올세라믹 수복물이나 라미네이트를 제작할 때에는 세라믹의 두께를 주의 깊게 고려해야만 임상적으로 만족한 만한 세라믹 수복물을 얻을 수 있을 것이다. 이연구의 한계점은 시편수가 비교적 적었다는 문제가 있다. 따라서 앞으로는 시편수를 결정함에 있어 선행연구를 통한 power analysis가 필요하다.

결론

CAD/CAM 세라믹의 두께에 따라서 색에 미치는 영향을 알아보기 위하여 IPS e.max CAD와 IPS Empress CAD

시편을 분광광도계를 이용하여 측정하여 다음과 같은 결론 을 얻었다.

- 1. IPS e.max CAD는 기준 시편에 비해 두께가 0.2 mm 줄어들면 평균 색차가 2보다 작았고, 0.4 mm 일 때는 평균색차가 2보다 컸다.
- 2. IPS Empress CAD는 기준 시편에 비해 두께가 0.2 mm 줄어들면 평균 색차가 2보다 컸고, 0.4 mm 일 때는 평균 색차가 4 이상으로 육안으로 확연히 구분할 수 있는 색차였다.
- 3. IPS e.max CAD가 IPS Empress CAD에 비해서 색 차가 적었다.

이를 통해 재료와 두께에 따라서 색이 영향을 받았다. 그러므로 임상에서 IPS e.max CAD로 제작한 수복물은 두께가 0.4 mm, IPS Empress CAD로 제작한 수복물은 두께가 0.2 mm 이상 차이가 나면 동일한 색상을 재현할 수 없으므로 목표하는 최종수복물의 색을 표현하고자 할 때에는 두께를 고려해야 한다.

References

- Kelly JR, Nishimura I, Campbel SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996; 75: 18-32. http://dx.doi.org/10.1016/s0022-3913(96)90413-8.
- Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed., St Louis: Mosby; 2006: 774. http://dx. doi.org/10.1111/j.1532-849x.2002.223 4.x.
- Christensen GJ. Porcelain-fused-to-metal vs. nonmetal crowns. J Am Dent Assoc 1999; 130: 409-411. http://dx.doi. org/10.14219/jada.archive.1999.0211.
- Denry IL. Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med 1996; 7: 134-43. http://dx.doi.org/10. 1177/1045441196007002020.
- Miyazaki T, Hotta y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009; 28(1): 44-56. http://dx.doi.org/10.4012/dmj.28.44.
- Aboushelib MN, Jager Nd, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005; 21: 984-91. http://dx.doi.org/10.1016/j.dental.2005.03.013.
- Culp L, McLaren EA. Lithium Disilicate: The Restorative Material of Multiple Options. Compend Contin Educ Dent 2010; 31: 716-25.

- Heffernan MJ, Aquilino SA, Diaz-Amold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. The Journal of prosthetic dentistry 2002; 88(1): 4-9. http://dx.doi.org/10. 1016/s0022-3913(02)00040-9.
- Teixeira EC, Piascik JR, Stoner BR, Thompson JY. Dynamic fatigue and strength characterization of three ceramic materials. Journal of Materials Science: Materials in Medicine 2007; 18(6): 1219-24. 10.1007/s10856-007-0131-4.
- Höland W, Rheinberger V, Apel E, van't Hoen C, Höland M, Dommann A, Graf-Hausner U. Clinical applications of glass-ceramics in dentistry. Journal of Materials Science: Materials in Medicine 2006; 17(11): 1037-42. http://dx.doi.org/10.1007/s10856-006-0441-y.
- McLaren EA, Cao PT. Ceramics in dentistry—part I: classes of materials. Inside Dent 2009; 5: 94-104.
- Guarda GB, Correr AB, Gonçalves LS, Costa AR, Borges GA, Sinhoreti MA, et al. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper Dent 2013; 38(2): 208-17. http://dx.doi.org/10.2341/11-076-1.
- Sproull RC. Color matching in dentistry. Part I. The three-dimensional nature of color. J Prosthet Dent 1973;
 416-24. 10.1067/mpr.2001.119827.
- Swepston JH, Miller AW. 3rd. Esthetic matching. J Prosthet Dent 1985; 54: 623-5. http://dx.doi.org/10.1016/0022-3913 (85)90234-3.
- O'Brien WJ, Groh CL, Boenke KM. A new, small-color-difference equation for dental shades. J Dent Res 1990;
 1762-4. http://dx.doi.org/10.1177/00220345900690111
 001.
- Barath VS, Faber FJ, Westland S, Niedermeier W. Spectrophotometric Analysis of All-ceramic Materials and Their Interaction with Luting Agents and Different Backgrounds. Adv Dent Res 2003; 17(1): 55-60. http://dx.doi. org/10.1177/154407370301700113.
- Gomez Polo C, Gomez Polo M. Celemin Vinuela A, Martinez Vazquez, De Parga JA. Differences between the human eye and the spectrophotometer in the shade matching of tooth colour. J Dent 2014; 42(6): 742-5. http://dx.doi.org/ 10.1016/j.jdent.2013.10.006.
- Celik G, Uludag B, Usumez A, Sahin V, Ozturk O, Goktug G. The effect of repeated firing on the color of an all-ceramic system with two different veneering porcelain shades. J Prosthet Dent 2008; 99: 203-8. http://dx.doi.org/10.1016/s0022-3913(08)60044-x.

- Walter WS. Correction of single-beam sample absorption error in a hemispherical 45°/0° spectrophotomter measurement cavity. Color Res Appl 2013; 39(5): 436-41. http://dx.doi.org/ 10.1002/col.21824.
- Vichi A, Ferrari M, Davidson CL. Influence of ceramic and cement thickness on the masking of various types of opaque posts. J Prosthet Dent 2000; 83: 412-7. http://dx.doi. org/10.1016/s0022-3913(00)70035-7.
- 21. Hannad IA, Stein RS. A qualitative study for the bond and color of ceramometals. Part II. J Prosthet Dent 1991; 65: 169-79. http://dx.doi.org/10.1016/0022-3913(91)90158-s.
- Tuncdemir AR, Dilber E, Kara HB, Ozturk N. The effects of porcelain polishing techniques on the color and surface texture of different porcelain systems. Mater Sci Appl 2012;
 294-300. http://dx.doi.org/10.4236/msa.2012.35043.
- 23. Yu B, Lee YK. Color difference of all-ceramic materials by the change of illuminants. Am J Dent 2009; 22: 73-8.
- 24. Alma Dozic, Kleverlaan CJ, Meegdes M, Zel J, Feilzer AJ. The influence of porcelain layer thickness on the final shade of ceramic restorations. J Prosthet Dent 2003; 90: 563-70. http://dx.doi.org/10.1016/s0022-3913(03)00517-1.
- Jorgenson MW, Goodkind RJ. Spectrophotometric study of five porcelain shades relative to the dimensions of color, porcelain thickness, and repeated firings. J Prosthet Dent 1979; 42: 96-105. http://dx.doi.org/10.1016/0022-3913(79) 90335-4.
- Barghi N, Richardson JT. A study of various factors influencing the shade of bonded porcelain. J Prosthet Dent 1978; 39: 282-4. http://dx.doi.org/10.1016/s0022-3913(78) 80096-1.
- Barghi N. Color and galze: effects of repeated firings.
 J Prosthet Dent 1982; 47: 393-5. http://dx.doi.org/10.1016/s0022-3913(82)80088-7.
- Zijp JR, Ten Bosch JJ, Groenhuis RAJ. HeNe-laser scattering by human dental enamel. J Dent Res 1995; 74: 1891-8. http://dx.doi.org/10.1177/00220345950740121301.
- 29. Ten Bosch JJ, Coops JC. Tooth color and reflectance as

- related to light scattering and enamel hardness. J Dent Res 1995; 74: 374-80. http://dx.doi.org/10.1177/0022034595 0740011401.
- Corciolani G, Vichi A, Louca C, Ferrari M. Influence of layering thickness on the color parameters of a ceramic system. Dent Mater 2010; 26(8): 737-42. http://dx.doi.org/ 10.1016/j.dental.2010.03.018.
- Son HJ, Kim WC, Jun SH, Kim YS, Ju S, Ahn JS. Influence of dentin porcelain thickness on layered all-ceramic restoration color. J Dent 2010; 38(2): e71-7. http://dx.doi.org/ 10.1016/j.jdent.2010.08.007.
- Nakamura T, Satio O, Fuyikawa J, Ishigaki S. Influence of abutment substrate and ceramic thickness on the colour of heat-pressed ceramic crown. J Oral Rehabil 2002; 29: 805-9. http://dx.doi.org/10.1046/j.1365-2842.2002.00919.x.
- Della Bona A, Pecho OE, Ghinea R, Cardona JC, Pérez MM. Colour parameters and shade correspondence of CAD-CAM ceramic systems. J Dent 2015; 43: 726-34. http://dx.doi.org/10.1016/j.jdent.2015.02.015.
- Seong DH, Lee IG, Sohng JW, Bok WM, Ahn SG, Park CW. The influence of porcelain layer thickness and color on the final shade of ceramic restorations. J Korean Acad Dent Health 2005; 43(5): 587-97. http://dx.doi.org/10.1016/ s0022-3913(03)00517-1.
- Salameh Z, Tehini G, Norma Z, Ragab HA, Berberi A, Aboushelib MN. Influence of ceramic color and translucency on shade match of CAD/CAM porcelain veneers. Clinical Research 2014; 9(1): 90-8.
- Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. J Dent Res 1989; 68: 1760-4. http://dx.doi.org/10.1177/00220345890680120801.
- Douglas RD, Steinhauer TJ, Wee AG. Intraoral determination of the tolerance of dentists for perceptibility and acceptability of shade mismatch. J Prosthet Dent 2007; 97(4): 200-8. http://dx.doi.org/10.1016/j.prosdent.2007.02.012.